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Abstract. The three-dimensional generalised Toda lattice is introduced and  investigated. 
Its connection to the Kadomtsev-Petviashvili equations is established. We unify the inverse 
scattering method,  Darboux and  Bicklund transformation for the KadomtseL- Petviashvili, 
Korteweg-de Vries equations and the Toda  lattice. 

1. Introduction 

Solitary waves were derived as special solutions of the Korteweg-de Vries ( K d V )  

equation when i t  was formulated in 1985 (see [I]) .  The stability of these solutions 
under collisions was investigated by Zabusky and Kruskal [ 2 ]  70 years later, using a 
computer simulation and  regarded as a continuum version of the recurrent phenomena 
originally discovered by Fermi, Pasta and Ulam on a non-linear lattice [3]. Toda 
intended to find a non-linear discrete equation having these solitary waves as a solution, 
and found the famous Toda lattice in  1967 [4]. After the introduction of the Toda 
lattice its importance was quickly and widely recognised by physicists. It appears that 
the Toda lattice and its different generalisations can describe different physical 
phenomena and are contained among the soliton equations. These facts have given a 
strong impetus for a thorough investigation of these equations and recent results in 
this direction can be found in [5]. 

Both the Toda lattice and Kdv equation have played a very important role in 
non-linear problems. Some common features of the equations characterised by these 
solutions, i.e. the soliton equation, became known by 1970, such as the inverse method, 
the Backlund transformation method and also infinitely many conserved currents. In 
mathematical studies of non-linear problems, i t  is very interesting to understand various 
equations from a common basis. Recently Saitoh [6] proposed a method for unifying 
the Kdv equation and the Toda lattice by introducing a generalised Toda lattice. This 
method clarifies the relation between a soliton equation of continous variables and  its 
discrete version. In  this approach the Kdv equation is derived from the Toda lattice 
through a transformation characterised by a parameter in such a way that the integrabil- 
ity is preserved for all values of the parameter. 

On the other side the Kdv equation can also be recovered from the Kadomtsev- 
Petviashvili ( K P )  [7] equation. The K P  equation is the non-linear partial differential 
equation in three independent variables t ,  x, y while Kdv is in two: f, x. The Kdv 
equation is obtained by neglecting the dependencies in the y variable in the Kpequation. 
Both equations can be used to describe the evolution of relatively long water waves 
of moderate amplitudes as they propagate in shallow water. Both equations are 
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completely integrable. Recently i t  appeared that the K P  equation played an important 
role in string theory [SI. 

For these reasons i t  is reasonable to ask: is i t  possible to unify these equations i.e. 
K P ,  Kdv and Toda lattice, simultaneously? In this paper we solve this problem. To 
this aim we introduce a more general Toda lattice than proposed by Saitoh. Our 
method utilises the Saitoh transformation characterised by a parameter and by ‘addition’ 
of one more dimension similar to the K P  equation. As the result we obtain the 
three-dimensional Toda lattice. In the sense explained below the K P  equation is given 
by the limit of our generalised Toda lattice which is a transformed version of the Toda 
lattice itself. Then the K d v  equation is obtained from the K P  equation by standard 
procedures. Therefore the K P  and Kdv systems can be said to be in the framework of 
the Toda lattice. The three-dimensional Toda lattice just defined extends our knowledge 
of the still small class of integrable equations in 2 +  1 dimensions. 

This paper is organised as follows. In $ 2 we recapitulate the construction of Saitoh 
in which she defined a generalised two-dimensional Toda lattice. In $ 3 we introduce 
our construction. The next three sections contain descriptions of the constructions of 
the inverse scattering method, Darboux and Backlund transformations for our model, 
respectively. In all these sections we investigate the transformation characterised by 
a parameter in such a way as to obtain the connection between the continuous and  
discrete version. The last section contains concluding remarks. 

2. The generalised two-dimensional Toda lattice 

The system of equations obtained by Toda can be written down as follows: 

a’ 
7 In( 1 +Al 1 = f n  + I +A, - , - 2J,  a 7- 

(2.1) 

where n denotes the lattice site and J l  the force between particles. Saitoh introduced 
the following transformation with the parameter O <  h s 1: 

r = t / h 3  

n = x/ h + (11 h’ - h 2 ) t /  h 

A, = h ’ u , , ( T ) = h ’ u ( x , t )  (2.4) 
in which the variable x which specifies the site of a lattice is no longer discrete but is 
now continuous. Applying the transformation (2.2)-(2.4) to (2.1) we obtain the 
generalised Toda lattice: 

1 
h 

l n ( l + h ’ u ( x , t ) ) = a [ u ( x + h ,  t ) + u ( x - - h , t ) - 2 u ( x , t ) ] .  (2.5) 

If we put h = 1 in (2.5) we obtain the Toda lattice while for h -+ 0 (2.5) reduces to the 
K d v  equation 

d l a ,  1 a3 
- u + - - u - + - - u = o .  
a t  4 a x  2 4 a x 3  (2.6) 

In that sense the Kdv equation is given as the limit of the generalised Toda lattice. 
Notice that the right-hand side of (2.5) can be considered as the function which depends 
on the three different points x i  h and  x. For that reason, such a generalisation 
sometimes is called non-local [9] but in the next section we will not use this name. 



Toda lattice and K P  equations 5009 

3. The generalised three-dimensional Toda lattice 

Let us discuss why (2.5) can be called the two-dimensional Toda lattice. On the one  
hand it can be named in such a way because this equation describes the behaviour of 
the function which depends on the two variables. On the other hand notice that the 
left-hand side of (2.5) is not exactly a ‘two dimensional’ generalisation of the  d’Alember- 
tian or Laplacian operator in  two-dimensional space. Indeed the operator on the 
left-hand side of (2.5) is a second power of the same operator. 

In  order to avoid the misunderstanding in this interpretation and with the two- 
dimensional Toda lattice proposed by Mikhajlov [ 101 and Fordy and Gibbons [ 111 
which can be written as 

where f n  =f , , ( r ,  7‘) and n denotes the lattice site, we will use the name of two- 
dimensional Toda lattice while we call (2.5) the generalised two-dimensional Toda 
lattice. 

Therefore from this point of view one can ask: is i t  possible to apply the two- 
dimensional d’Alembertian or  Laplacian operator with the Saitoh trick, i.e. with 
l / h 2 -  h’, simultaneously to the left-hand side of (3.1)? To see that it is possible we 
shall introduce the following transformation with the parameter O <  h s 1: 

n = x/  h + ( j$ - h ’) t /  h (3.3) 

f n  = h?u’,(.r, 7’) = h2u(.r,y, t )  (3.4) 

are two independent where now x is no longer discrete but continuous and t and 
variables and U’ = i l .  Applying the transformation (3.2)-(3.4) to (3.1) we obtain 

1 
(3.5) 

Equation (3.5) is called the three-dimensional generalised Toda lattice in  the following. 
For h = 1 our  equation reduces to the two-dimensional Toda lattice (3.1) while for 
h + 0 i t  is easy to see that we then obtain 

- -- h 4 [ ~ ( x + h , y ,  t ) + u ( x - h , y ,  ~ ) - ~ U ( X , ~ V ,  t ) ] .  

1 a3 ) 
u + : u u ,  +- 7 U +- 7 U = 0 

24 ax (3.6) 

the K P  equation. More exactly, the K P  I if  u2 = 1 and K P  I 1  if U’ = -1. The Kdv equation 
is recovered from the K P  equation if we neglect the y dependence in (3.6) and put the 
constant of integration equal to zero. 
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In  this sense the K P  and K d v  equations are given by the limit of our three-dimensional 
generalised Toda lattice which is a transformed version of the Toda lattice itself. 

4. The inverse scattering method for the three-dimensional generalised Toda lattice 

The inverse scattering transformation ( I S T )  is one of the most powerful methods of 
solving the soliton equations. First this method was used for the K d v  equation and 
later it has been extended by Zakharov and Schabat [12] and Ablowitz et al [I31 to 
other two-dimensional soliton equations. From the conceptual point of view the steps 
associated with the implementation of IST are now quite clear. The heart of this method 
is the two-dimensional Schrodinger equation in which the potential is the solution of 
the given non-linear equation. I n  order to reconstruct this potential one can use the 
inverse method. Generally speaking, the class of solvable equations for which IST can 
be initiated results from the compatibility of two operators, which we shall call L and 
M :  

L$ = A $  (4.1) 

4, = MG. (4.2) 

The associated non-linear evolution equation is obtained via compatibility, given by 

(4.3) 

if and only if A ,  = 0. Equations (4.1) and (4.2) constitute Lax’s famous result. L and 
M may be matrix valued operators of arbitrary order. The operator L may be 
differential, integro-differential, discrete or even a purely linear algebraic system [ 141. 

For the K P  equations this inverse scattering method was first applied by Manakov 
[15]. Here the situation is conceptually similar to the two-dimensional case. The K P  

equations are obtained via the compatibility condition on L and M operators but the 
Schrodinger equation becomes time dependent. 

The inverse scattering method is also used on the Toda lattice. Flaschka [16] and  
Manakov [ 171 successfully used this method on the one-dimensional Toda lattice. 
Fordy and Gibbons [ 111 (see also Mikhajlov [IO]) discovered IST for a two-dimensional 
periodic Toda lattice by the factorisation of the Nth-order elliptic scalar differential 
operator. This result can also be easily extended onto the infinite two-dimensional 
Toda lattice. 

We now show that these methods follow from a common basis from the IST for 
our  three-dimensional generalised Toda lattice. First let us define this method for our 
model. Notice that, due to the factorisation of the operator in  (3.5), one can easily 
write down the inverse scattering method, which is 

L, + L M  - M L  = 0 
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x (  I - - - *  i r ( i ) ) G ( n )  (4.5) 

where c L ( n ) = G ( x , y ,  t ) ,  c L ( n * l ) = i ( x r h , j * ,  t )  and 

h u ( x, j; t = ex p[ cp ( n, y, t I - cp ( n - 1, y, t ) ] - 1 = ex p[ 4 n ) I  - 1 (4.6) 

cp(n,y, t ) = c p ( x , j ;  t )  c F ( n + I , . v , t ) = c p ( x r h , r , , t )  (4.7) 

cFin,.v, t )  = r ( i ) .  (4.8) 

Notice that the original equation ( 3 . 5 )  with the '+ 'sign is obtained as a compatibility 
condition on (4.4) and (4.5). We choose the '+' sign for simplicity. However all 
calculus can be carried out for the * - '  sign also. 

Our IST is equivalent for h = 1 with I S T  for the two-dimensional Toda lattice 
discovered by Mikhajlov [ 101 or with IST considered by Fordy and Gibbons [ 113 after 
the transformation 

,i 

I = - *  

(4.9) 

Now we show that our I S T  for h - 0  reduces to the IST for K P  I  or K P  1 1 .  To see it let 
us rewrite (4.4) and (4.5) as 

(4.10) 

(4.11) 

To investigate the limit h + 0 let us use the following approximation formulae: 

h ' w ( n , y ,  t ) = h 2 w ( x , y ,  t ) = r ( n ) = h ' w ( x ) = h ' w  (4.12) 
n 

lim 1 r ( i )  = h u ( x ' )  d x ' =  q ( n )  = p (x )  (4.13) 

lim e x p ( F ) 4 ( n + l ) = [ t , b + h t , b ,  r ( n + l )  +lh2cL, ,+7 h' G,,, +4h'w$+Ih7wt,b,, +ah'o,J/] 
h - 0  3. 

h - O  , = -x  

(4.14) 

I h 7  lim exp( y) J / (  n - 1)  = [ 8 - h b y  + I h2$ , ,  - - 4, ,, + $ h  ' w 4  - $ h  ' w 4 ,  -ah ' U , $  
h - 0 3! 

(4.15) 
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where 

a 4 = $ ( n )  = $(x )  4,  =- $. (4.16) 
ax 

Substituting (4.12)-(4.16) into (4.10) and (4.11) and equating the terms in the same 
power of h we obtain after scaling the function 

*-exp[ -(A)]* ah-  (4.17) 

a*, = -;*,, + 2w*. (4.19) 

Equations (4.18) and (4.19) are the IST for K P  I or K P  I 1  discovered and  discussed 
by Manakov [15]. Now the IST for K d V  can be easily recovered from (4.18) and (4.19) 
by neglecting the y dependence in (4.18) and putting a$, = A4 in (4.19). In  that way 
we unify IST from K P  and Kdv equations with 1s-r for the three-dimensional generalised 
Toda lattice. In  that sense K P  and  Kdv are transformed versions of our  Toda lattice itself. 

5. The Darboux transformation 

The Darboux transformation can be applied for the explicit integration of linear 
evolution equations with the scalar or matrix valued cofficients. Probably Matveev 
was the first who used this concept for the integration of the Toda lattice [18]. In  
order to find this transformation for our  model one can easily prove that when cp(n)  
with (4.6) is the solution of equation (3.5) then 

(5.1) 

also satisfy (3.5) if $(n) satisfy (4.4) and (4.5). This is the desired Darboux transforma- 
tion for ou r  Toda lattice. 

c p ' ( n )  = j ( c p ( n )  + cp( n - 1)) - In(*(n - 1 ) / $ ( n ) )  

In  the continuum limit h + O  using the formula (4.13) we obtain 

h 1' w f =  h j' w -4h' 1' w,  - In ( / -h+ , /$ ) .  

I " t = j ' w + : * ,  (5.3) 

(5.2) 

Using the Taylor expansion of the In function and  keeping the terms in the first power 
of h, we obtain 

or in the equivalent form as 

w ' = w + ai, In rc/. (5.4) 

Equations (5.3) and (5.4) define the Darboux transformation for the K P I  or K P  11 
equations discovered by Matveev [ 191. Interestingly the same formula holds for the 
Kdv equation. The verification of this statement is straightforward. It is enough to 
substitute (5.3) or (5.4) into (3.6) and use the fact that II, satisfies (4.18) and (4.19). 
Now one can use this Darboux transformation to get the analogue of the soliton 
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solutions of ou r  Toda lattice and then to investigate the limiting procedure to obtain 
the soliton solutions of the K P  equations. In this sense the Darboux transformation 
of our three-dimensional Toda lattice contains the Darboux transformation of the K P  

as well as K d v  equations. 

6. The Backlund transformation 

Derivation of the Backlund transformation ( BT) for any completely integrable non- 
linear equations is usually considered to be the ultimate goal. The knowledge of this 
transformation allows us to construct the huge class of solutions to the given equation. 
In  one point of view the BT is obtained via a gauge transformation of the corresponding 
Lax operators and this gauge theoretical point of view has been pursued by numerous 
researchers [20]. I t  is the analogue of the Darboux transformation in the theory of 
the Schrodinger equation and the BT for the K d v  equation. 

I n  this section we would like to study the interconnection between different BT, i.e. 
KP, K d v  and Toda lattice, and unify these three Backlund transformations. We will 
not discuss here how one can obtain soliton solutions by this method. 

First let us notice that Toda [21] derived BT for the Kdv equation by continuous 
approximation from the ET of the one-dimensional Toda lattice. In  his derivation, one 
has to be very careful to find the centre of Taylor expansion in order to perform the 
approximation procedure. In the Saitoh approach the situation become much easier 
because the choice of the centre becomes rather natural. The same situation appears 
in our case. Indeed the BT for the three-dimension: 

1 
h' 

=- {exp[(F(n + 1 )  - cp( n + I ) ]  -exp[(F 

Toda lattice has the form 

n )  - v ( n ) I }  (6.1) 

1 
= p i e x p [ v (  n + 1) - G ( n ) l  - exp[cF(n) - (F(n - 1111. (6.2) 

Here v ( n )  and ( F ( n )  are the old and new solutions of (3.5) respectively. For h = 1 our 
formulae reduce to the Backlund transformation for the two-dimensional Toda lattice 
considered by Fordy and Gibbons [ 1 I ] .  In  order to find the limit h + 0 in (6.1) and 
( 5 2 )  let us use two types of expansions of ~ ( n ) .  For (6.1) let us expand p ( n )  and 
v ( n )  in the MacLaurin series around X +  h / 2 .  For example we obtain 

\ - I , , ?  

[ W ( . Y ' )  - G( x')]  dx '+  ; h 2 (  w + G) +Ah ' ( U  - G),. 

(6.3) 
We expand ~ ( n )  and G ( n )  i n  (6.2) around .Y. In  the following we assume that both 
w and G are analytic functions of x in order to compare the expansions of (6.1) and 
(6.2). Using this type of expansion for (6.1) and (6.2), respectively, and equating the 
coefficients in  the same power of h up to first order we obtain 

I v(n+i+i)  - 4 ( n  +;-:) = h 

u L I ' ( ; - w ) d x ' =  - ( w - & )  ( w - G ) d x '  
dY I' 
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+!(U - G ) (  J '  ( w  - 6 )dx'  (6.6) 

formulae (6.4)-(6.6) can be reduced to the simpler form i f  we use the following 
transformation: 

(6.7) 

then (3.6) transforms to 

Now if we subtract (6.6) from (6.5) we obtain 

(6.9) 
a 

a t  --1 ay 
1' ( i  - q )  dx '+au-  ( q  + 4) = $9 - i),y + i ( q  - i ) ' - : ( q  - G ) (  q + 61, 

and formula (6.4) becomes 

2 u 4 1 ' ( i - q ) d x ' = ( q + y l , - ( y - i ) ~ .  d y  (6.10) 

In this way (6.9) and (6.10) are the Backlund transformations for the K P  I or K P I I  
equations first discovered by Chen [22] and  later disucssed by many authors [23]. 

In this sense we unified the Backlund transformation of the K P  equations with the 
Backlund transformation for our three-dimensional generalised Toda lattice. 

In order to obtain the BT for Kdv from (6.9) and (6.10) it is enough to assume 

a 
- ( 9  + 4) = 0 
a>. 

U 1' Ci j -q ) ,  dx '=cons tan t  

(6.11) 

(6.12) 

and differentiate (6.9) with respect to x. Then our formulae (6.8)-(6.10) reduce to the 
BT for Kdv obtained by Wadati et a /  [24]. 

7. Concluding remarks 

In this paper we have shown that the K P  equations, Kdv and Toda lattice can be unified 
by introducing the concept of the three-dimensional generalised Toda lattice. Then 
we investigated how the inverse scattering method, Darboux and  Backlund transforma- 
tions are connected among themselves. There are quite a number of other remarkable 
properties, which are shared by most of the intergrable equations and which are 
believed to indicate solvability such as: a bi-Hamiltonian formulation and  the existence 
of a hereditary recursion operator. In  the case of the K P  equations the non-existence 
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statements of the bi-Hamiltonian structure were formulated [ 2 5 , 2 6 ] .  However Fokas 
and Santini recently showed [27] that the bi-Hamiltonian structure of KdV and K P  

equations follow from the same operator structure. I n  their construction one requires 
the essential use of a formalism for generalised functions (distributions) with bilocal 
arguments. It will be very interesting to use our approach in  the investigation of the 
bi-Hamiltonian structure of the K P  equation, because the bi-Hamiltonian structure of 
the Toda lattice had been established earlier by Leo et a /  [28], and then compare this 
with the formalism proposed by Fokas and Santini. The paper in this direction is in 
preparation. 
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